Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition
نویسندگان
چکیده
A common practice to gain invariant features in object recognition models is to aggregate multiple low-level features over a small neighborhood. However, the differences between those models makes a comparison of the properties of different aggregation functions hard. Our aim is to gain insight into different functions by directly comparing them on a fixed architecture for several common object recognition tasks. Empirical results show that a maximum pooling operation significantly outperforms subsampling operations. Despite their shift-invariant properties, overlapping pooling windows are no significant improvement over non-overlapping pooling windows. By applying this knowledge, we achieve state-of-the-art error rates of 4.57% on the NORB normalized-uniform dataset and 5.6% on the NORB jittered-cluttered dataset.
منابع مشابه
Robust Audio Event Recognition with 1-Max Pooling Convolutional Neural Networks
We present in this paper a simple, yet efficient convolutional neural network (CNN) architecture for robust audio event recognition. Opposing to deep CNN architectures with multiple convolutional and pooling layers topped up with multiple fully connected layers, the proposed network consists of only three layers: convolutional, pooling, and softmax layer. Two further features distinguish it fro...
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملOn Random Weights and Unsupervised Feature Learning
Recently two anomalous results in the literature have shown that certain feature learning architectures can yield useful features for object recognition tasks even with untrained, random weights. In this paper we pose the question: why do random weights sometimes do so well? Our answer is that certain convolutional pooling architectures can be inherently frequency selective and translation inva...
متن کاملExploring convolutional neural network structures and optimization techniques for speech recognition
Recently, convolutional neural networks (CNNs) have been shown to outperform the standard fully connected deep neural networks within the hybrid deep neural network / hidden Markov model (DNN/HMM) framework on the phone recognition task. In this paper, we extend the earlier basic form of the CNN and explore it in multiple ways. We first investigate several CNN architectures, including full and ...
متن کاملObject Recognition with Multi-Scale Pyramidal Pooling Networks
We present a Multi-Scale Pyramidal Pooling Network, featuring a novel pyramidal pooling layer at multiple scales and a novel encoding layer. Thanks to the former the network does not require all images of a given classification task to be of equal size. The encoding layer improves generalisation performance in comparison to similar neural network architectures, especially when training data is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010